
Journal of Sound and Vibration (1997) 199(3), 463–471

FAST EIGENVALUE SENSITIVITY CALCULATIONS
FOR SPECIAL STRUCTURES OF SYSTEM

MATRIX DERIVATIVES

M. A. E-K  A. A. A-O

College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

(Received 12 February 1996, and in final form 1 July 1996)

In this paper a possible application is presented of a general rank-1 matrix formula to
the eigenvalue sensitivity evaluation which reduces the sensitivity expressions to elegant,
very fast and recursive formulas with substantial savings in computer resources. The rank-1
matrix formula allows for re-arranging terms in multi-product forms involving vectors and
matrices. The formula is applicable to rank-1 matrices of special structures which may
constitute derivatives of the system state matrix with respect to parameters of interest. In
such cases, the use of the rank-1 formula yields exact non-approximate solutions which are
identical to those obtained by other conventional formulas. The applicability of the rank-1
formula is believed to cover a wide variety of practical engineering systems pertaining to
sound and vibration.
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1. INTRODUCTION

The dynamic behaviour of engineering systems, which is a key factor in their design and
operation, is closely related to the eigenvalues of the so-called system matrix often referred
to in modern control theory to indicate the free or natural response of the system.
Eigenvalue sensitivity analysis has, to a great extent, been developed over the years in both
theory and applications [1–6]. At present, eigenvalue sensitivity analysis is regarded as an
important discipline in systems design and control. As many practical engineering systems
today are large-scale in nature, efficient computation of eigenvalue sensitivities with respect
to various operating and design parameters is a key requirement in the analysis [7, 8].
Much faster computations and reduced memory requirements can be attained if the special
characteristics and structure pertaining to the system under study are utilized.

While working extensively on the problem of eigenvalue sensitivity evaluation, which
involves an ordered sequence of product terms of vectors and matrices, the authors of this
paper have noticed that, under certain conditions, the result would not change even with
some terms in the product sequence exchanging their positions [9]. Such simple
manipulation leads to a remarkable reduction in mathematical expressions when the
derivatives of the system matrix (with respect to parameters of interest) have special
structures, the rank of which equals 1. In this case, the sensitivity expressions reduce to
more compact, elegant and recursive schemes leading to much faster computations.
Furthermore, those special matrix structures, to which the rank-1 matrix formula is
applicable, are believed to be very common in many practical engineering applications
[2, 4, 8]. In such applications, only very few elements of the system matrix would depend
on a given parameter that is likely to change in practice. In other words, for each sensitivity
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parameter of interest, the first and higher order derivatives of the system matrix would
be extremely sparse with only few non-zero elements and would, in most cases, constitute
special rank-1 forms.

In this paper the authors’ findings regarding the rank-1 matrix exchange formula are
summarized and one of its powerful applications to eigenvalue sensitivity evaluation,
resulting in substantial savings in computations, is illustrated. A wide range of applications
could benefit from the developments reported in the paper, including the design and
operation of mechanical structures and control schemes, stress analysis and dynamic
stability of rotating electrical machines.

2. THEORETICAL INVESTIGATION

Consider an (n×m) complex (or real) matrix C (i.e., C has n rows and m columns) and
another (n× l) complex (or real) matrix D, where both C and D are rank-1 matrices which
can be expressed in the forms,

C= zxT and D= zyT, (1a, b)

with x, y and z being (m×1), (l×1) and (n×1) complex (or real) vectors, respectively,
and the superscript T denotes transposition. Then, the following theorem is introduced [9].

Theorem. The vector-matrix product equation

(hTCg)(qTDp)= (qTCg)(hTDp), (2)

where C and D are given by equation (1), holds true for any (n×1), (m×1), (n×1),
(l×1) complex (or real) vectors h, g, q and p, respectively.

Proof. The left-hand side of equation (2) is written, by using equations (1), as

LHS=(hTz)(xTg)(qTz)(yTp).

By exchanging the first and third (scalar) terms,

LHS=(qTz)(xTg)(hTz)(yTp)= (qT(zxT)g)(hT(zyT)p)

= (qTCg)(hTDp)=RHS q

Discussion
1. It is apparent that the real value of the above theorem lies in the relative significance

of the product terms (qTCg) and (hTDp) in comparison with (hTCg) and (qTDp)in equation
(2). This, of course would depend on the particular application of interest as well as the
practical meaning of the individual product terms, as will be discussed in section 3.

2. It is also noted that the above theorem is valid for any combination of real and/or
complex matrices and vectors as long as the proper dimensions are observed.

3. A trivial case of the theorem is obtained when any of the vectors or matrices in
equation (2) is zero. On the other hand, a special case of interest would result in when
C and D are equal, in which case both matrices must be square.

4. The requirement that the matrices C and D must be rank-1 and have the form (1)
may seem restrictive to the applicability of the theorem. However, as will be seen in the
following section, practical applications do exist which contain matrices of the form (1).

3. APPLICATION TO EIGENVALUE SENSITIVITY

One application is presented here in which the rank-1 matrix formula described in the
previous section would prove to be very useful. The application involves the calculation
of the first and higher order sensitivities of eigenvalues of a real matrix with respect to
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variations in some parameters which define the elements of the matrix. In practice, the real
matrix is often called the system or state matrix and the parameters usually constitute
design and/or operation variables in the engineering system on which the elements of the
system matrix would depend. The dynamic behaviour of many engineering systems which
experience variations in design or operating conditions is closely linked to the eigenvalues
of the system matrix. Therefore, the sensitivities of the eigenvalues (system modes) with
respect to variations in system parameters are extremely important in assessing the effect
of such parameter variations on the overall dynamic performance of the system.

In many practical engineering systems, only very few elements of the system matrix
would be affected by changes in a system parameter of interest. This is usually true for
most system parameters which are likely to vary during actual system operation or as part
of the design and modelling processes. Consequently, the derivatives of the system matrix
with respect to such parameters are, in fact, very sparse and, in most cases, form rank-1
matrices. This special characteristic can be exploited, by using the rank-1 matrix formula
of this paper, to reduce the eigenvalue sensitivity formulas to much faster, recursive
expressions.

3.1.  

Consider an (n× n) system matrix A with eigenvalues li , i=1, . . . , n, arranged in a
column vector l. The eigenvalues, which are assumed to be distinct are related to the
corresponding eigenvectors ui , i=1, . . . , n, of A by the equations

Aui = liui , i=1, . . . , n. (3)

Similarly, for the transpose of A, one can write [1]

ATvj = ljvj , j=1, . . . , n. (4)

It is to be noted that ui and vj are orthogonal and can be scaled such that

vT
i ui =1, and vT

j ui =0 for j$ i. (5a, b)

Now, differentiating (3) with respect to a parameter z of interest, one obtains

A� ui +Au̇i = l� iui + li u̇i , (6)

where A� =(1A/1z), u̇i =(1ui /1z) and l� i =(1li /1z). Pre-multiplying equation (6) by vT
i and

using equation (5a) and the transpose of equation (4), yields [6]

l� i = vT
i A� ui . (7)

Differentiating equation (7) again, and with the same notation,

l� i = v̇T
i A� ui + vT

i A� ui + vT
i A� u̇i . (8)

Since uj , j=1, . . . , n, are assumed to be independent, then u̇i can be expressed in terms
of uj , j=1, . . . , n, as

u̇i = s
j

aijuj , (9)

where the coefficients aij can be obtained by substituting expression (9) in equation (6) and
using equations (3) and (5):

aij =(vT
j A� ui )/(li − lj ), j$ i. (10)
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Note that aii is not defined, as it is not needed in the subsequent analysis. By using a similar
argument, v̇i can be expressed in terms of vj , j=1, . . . , n, as

v̇i = s
j

gijvj , (11)

where

gij =−aji = vT
i A� uj/(li − lj), j$ i. (12)

Therefore, from equation (8)

l� i = vT
i A� ui +2 s

j$ i

aijaji(lj − li). (13)

Equations (7) and (13) give the first and second order eigenvalue sensitivities as currently
known in the literature with, sometimes, different methods of representation. The main
computational effort is expended in calculating the coefficients aij . Using similar
manipulations, as shown in the Appendix, yields the third-order sensitivities as

l	 i = vT
i A	 ui +3 s

j$ i

[aij(vT
i A� uj)− aji(vT

j A� ui)]+6 s
j$ i

aijaji(l� i − l� j)

+2 s
j$ i

s
k$ j

k$ i

(aijajkaki − ajiaikakj)(2lk − li − lj). (14)

3.2. -1  

The application of the rank-1 matrix exchange formula (2) has a powerful impact on
the eigenvalue sensitivity formulas derived in Section 3.1. First, consider the term aijaji in
the second order eigenvalue sensitivity expression of (13). Then, using equation (10), one
has

aijaji =[(vT
j A� ui)(vT

i A� uj)]/[(li − lj)(lj − li)], (15)

By letting C=D=A� , g= ui , h= vj , p= uj and q= vi , and using equation (2),

aijaji =[(vT
i A� ui)(vT

j A� uj)]/[(li − lj)(lj − li)] (16)

and, from equation (7),

aijaji = l� il� j/[(li − lj)(lj − li)]. (17)

Hence, for a rank-1 A� matrix, equation (13) reduces to

l� i = vT
i A� ui +2 s

j$ i

l� il� j/(li − lj): (18)

that is, the second order sensitivities can be obtained directly by using the first order
sensitivities already calculated.
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The application of equation (2) can be extended easily to the third and higher order
sensitivities. For example, for the third order sensitivity expression (14), first consider the
term

aijajkaki =[(vT
j A� ui)(vT

k A� uj)(vT
i A� uk)]/[(li − lj)(lj − lk)(lk − li)].

Applying equation (2) twice with C=D=A� , one obtains

aijajkaki = l� il� jl� k/[(li − lj)(lj − lk)(lk − li)]. (19)

Similarly, it can be shown that

ajiaikakj =−aijajkaki . (20)

Now, the term aij(vT
i A� uj) of equation (14) can be reduced further if A� and A� have the

special relationship between the matrices C and D, respectively, as in equations (1). In this
case,

aij(vT
i A� uj)= (vT

j A� ui)(vT
i A� uj)/(li − lj)= (vT

i A� ui)(vT
j A� uj)/(li − lj),

and, from equations (7) and (18),

aij(vT
i A� uj)=

l� i

(li − lj) $l� j −2 s
k$ j

l� jl� k

(lj − lk)%. (21)

Similarly, it can be shown that

aji(vT
j A� ui)=

l� j

(lj − li) $l� i −2 s
k$ i

l� il� k

(li − lk)%. (22)

Upon using equation (17) and equations (19)–(22), the third order expression (14) reduces
to

l	 i = vT
i A	 ui +3 s

j$ i $(l� il� j + l� jl� i)
(li − lj) %−2 s

j$ i

s
k$ i

k$ j

$ l� il� jl� k(2lk − li − lj)
(li − lj)(lj − lk)(lk − li)%, (23)

which, again, is recursive and depends solely on the previously computed first and second
order sensitivities.

3.3.  

Consider the special case in which the sensitivity parameters represent elements akl of
the system matrix itself [6]. In this case the first order sensitivity formula (7) reduces to

l� i = 1li/1akl = vikuil . (24)

Since A� in this case has zero elements in all but the kl location with ȧkl =1, the rank-1
exchange formula (2) would apply, as it is always possible to find a matrix C=A� by
defining the elements of z as zk =1 and zj =0 for j$ k and, similarly, xl =1 and xj =0
for j$ l. Therefore, since in this A� = 0 and aij = vjkuil/(li − lj), the second order sensitivity
formula (13) reduces to

l� i = 12li/1a2
kl =2 s

j$ i

(uilujlvikvjk)/(li − lj), (25)
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which is the same result obtained by direct application of equation (18) and using equation
(24). Similarly, the third order sensitivity can be obtained by direct application of equation
(23), with A	 = 0.

It is noted that the resulting sensitivity formulas for this special case reduce to very fast
computational schemes involving scalar operations and using elements of the eigenvectors
of the original system matrix and its transpose.

4. ASSESSMENT OF STORAGE AND CPU TIME

A simple comparison between the rank-1 sensitivity formulas (18) and (23) and the
corresponding conventional formulas (13) and (14) would reveal that the rank-1 formulas
require much less computer storage. This is mainly because they avoid the calculation and
storage of the [aij ] and [vT

i A� uj ] coefficient matrices. On the other hand, with regard to CPU
time requirements, the authors of this paper have analyzed several engineering systems of
different sizes in order to assess the saving in computer time associated with the use of
rank-1 matrix formulas for eigenvalue sensitivities as compared to conventional formulas.
A total of 48 case studies involving six different engineering systems were analyzed. The
applications included the design and operation of mechanical structures and control
schemes as well as the dynamic stability of rotating electrical synchronous machines. In
the studies performed, the order of the system matrix, which represents number of columns
or rows, ranged from five to 500. Out of the 48 case studies analyzed, 41 cases exhibited
rank-1 system matrix derivatives and were therefore considered for further comparison
with conventional formulas. While the use of the rank-1 matrix formula for first order
sensitivity calculation does not provide any savings, its use for second and third order
sensitivities offers remarkable savings in computational time. Even when a very efficient
computational scheme was employed at the expense of memory saving (for example, by
computing various matrix–vector products once and storing them for multi-use in
subsequent computations), the conventional formulas took about 2·5 times as much as
rank-1 formulas (in terms of CPU time for both second and third order sensitivities) on
a computer workstation for 5×5 system matrices. The ratio was 6·0 for 20×20 system
matrices, 13·5 for 50×50 matrices, 26·5 for 100×100 matrices, 76·0 for 300×300
matrices and 126·0 for 500×500 matrices. Indeed, such savings would represent a
significant improvement, especially when many design and operational parameters are to
be considered in the sensitivity analysis. In the case of a 500×500 system matrix, the
rank-1 formula took only 0·002 and 0·018 of the CPU time taken by conventional formulas
when calculating second and third order sensitivities, respectively.

During the studies performed, it was noted that the use of eigenvalue sensitivities to
estimate changes in system modes for large parameter changes would lead to sufficiently
accurate results and, therefore, repeat eigenvalue calculations could be avoided. The size
of the estimation error would depend on the size of the parameter change and the order
of sensitivity used. In one dynamic stability application with a +30% change in a system
gain parameter, the percentage error in estimating the change in the dominant eigenvalue
dropped from 16·9% to 5·3% as the sensitivity order increased from first to second. The
error was reduced further to 2·4% when third order sensitivities were employed.

6. CONCLUSIONS

The general rank-1 matrix formula used in this paper allows for a certain rearrangement
of terms in multi-product forms involving vectors and matrices. For exact
(non-approximate) solutions to be obtained, the application of the formula requires that



    469

the matrices in the product form possess certain rank-1 structures. Nevertheless, such
special structures of matrices are believed to exist in many engineering applications and
the use of the formula would be very useful in such applications. In applying the formula
to the eigenvalue sensitivity problem, as was demonstrated in the paper, the eigenvalue
sensitivity expressions can be reduced to compact, fast and elegant forms which are
recursive in nature and can be easily coded in computer programs. The special case in
which the sensitivity parameter of interest is simply an element of the original matrix was
presented in the paper. In this case, the resulting formulas for first and higher-order
eigenvalue sensitivities reduce to very fast, schemes involving scalar operations using
elements of the eigenvectors of the original system matrix and its transpose.

Analysis of several engineering systems of different sizes has shown that the rank-1
sensitivity formulas provide savings in the order of 60% for 5×5 system matrices in the
CPU time required to calculate second and third order sensitivities. Such savings are
increased to 83% for 20×20 matrices, to 93% for 50×50 matrices, to 96% for 100×100
matrices, to 98·7% for 300×300 matrices and to 99·2% for 500×500 matrices. These
savings are realized for each sensitivity parameter of interest, leading to a remarkable
reduction in the overall computational time. For many engineering systems analyzed by
the authors, very good estimates of eigenvalue changes could be obtained for changes in
system parameters of up to 225% without the need to repeat the entire eigenvalue
calculations. It is also noted that the use of third order sensitivities would, in some cases,
constitute a major improvement in accuracy.
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APPENDIX: DERIVATION OF THIRD ORDER SENSITIVITIES

In order to derive third order eigenvalue sensitivities, the second order sensitivities of
equation (13) are differentiated, yielding

···
l i =2 s

j$ i

[ȧijaji(lj − li)+ aijȧji(lj − li)+ aijaji(l� j − l� i)

+ s
j$ i

[gijv
T
j A� ui + aijv

T
i A	 uj ]+ vT

i A	 ui . (A1)
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Now aij(li − lj)= vT
j A� ui . Hence,

ȧij(li − lj)=−aij(l� i − l� j)+ s
k

[gjkv
T
k A� ui + aikv

T
j A� uk ]+ vT

j A� ui

=−(l� i − l� j)aij + s
k

[−akjv
T
k A� ui + aikv

T
j A� uk ]+ vT

j A� ui

=−(l� i − l� j)aij + vT
j A� ui + s

k$ i

k$ j

[−akjaik(li − lk)+ aikakj(lk − lj)]

+ [−aijl� i + aii aij(li − lj)]+ [−ajjaij(li − lj)+ aijl� ij ]

=−2(l� i − l� j)aij + vT
j A� ui + s

k$ i

k$ j

[−akjaik(li − lk)+ aikakj(lk − lj)]

+ aij(li − lj)[aii − ajj ].

Similarly,

(lj − li)ȧji =−2(l� j − l� i)aji + vT
i A� uj

+ s
k$ j

k$ i

[−akiajk(lj − lk)+ ajk aki(lk − li)]+ aji(lj − li)[ajj − aii ].

Hence, equation (A1) can be written as

···
l i = s

j

gijv
T
j A� ui + s

j

aijv
T
i A� uj + vT

i A	 ui

+2 s
j$ i

−ajiȧij(li − lj)+2 s
j$ i

aija� ji(lj − li)+2 s
j$ i

aijaji(l� j − l� i)

= s
j

[−ajiv
T
j A� ui + aijv

T
i A� uj ]+ vT

i A	 ui −2 s
j$ i

aji{−2(l� i − l� j)aij + vT
j A� ui

+ s
k$ i

k$ j

[−akjaik(li − lk)+ aikakj(lk − lj)]+ aij(li − lj)(aii − ajj)}

+2 s
j$ i

aij{−2(l� j − l� i)aji + vT
i A� uj + s

k$ j

k$ i

[−akiajk(lj − lk)+ ajkaki(lk − li)]

+ aji(lj − li)(ajj − aii)}+2 s
j$ i

aijaji(l� j − l� i).
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Rearranging terms then yields

···
l i = vT

i A	 ui + s
j$ i

[aijv
T
i A� uj − ajiv

T
j A� ui ]+ [aiiv

T
i A� ui − aiiv

T
i A� ui ]

+4 s
j$ i

aijaji(l� i − l� j)−2 s
j$ i

ajiv
T
j A� ui

−2 s
j$ i

s
k$ i

k$ j

[−ajiakjaik(li − lk)+ ajiaikakj(lk − lj)]

−2 s
j$ i

[ajiaij(li − lj)(aii − ajj)]+4 s
j$ i

aijaji(l� i − l� j)+2 s
j$ i

aijv
T
i A� uj

+ s
j$ i

s
j$ j

k$ i

[−aijakiajk(lj − lk)+2aijajkaki(lk − li)]

+2 s
j$ i

aijaji(lj − li)(ajj − aii)+2 s
j$ i

aijaji(l� j − l� i)

Hence,

···
l i = vT

i A	 ui +3 s
j$ i

[aij(vT
i A� uj)− aji(vT

j A� ui)]+6 s
j$ i

aijaji(l� i − l� j)

+2 s
j$ i

s
k$ j

k$ i

(aijajkaki − ajiaikakj)(2lk − li − lj).


